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Abstract

Joule heating in liquid metal magnetohydrodynamic flows is investigated with reference to self-cooled liquid metal blankets for
tokamaks. Pressure-driven flow of an electrically conducting fluid confined between two parallel, infinite walls with a transverse magnetic
field is studied. The walls are electrically conducting, which implies strong currents flowing within the thin conducting walls. The problem
is solved both analytically and numerically.

It is shown that the Joule heat cannot be neglected in certain range of parameters relevant to fusion blanket applications. The mag-
nitude of the Joule heat released inside the channel and the walls depends on the thermal conductivity of the outside surface of the chan-
nel walls. For thermally conducting outside surface of the walls the Joule heat can become significant for high values of the Hartmann
number and moderate average velocity. The effect is even more pronounced for thermally insulating outside surface of the walls. For
example, for lead–lithium flow with stainless steel walls the temperature increase along the flow exceeds 200 �C over the length of the
blanket, which is almost three times higher than that for thermally conducting outside surface of the walls.

The main reason for such a strong rise in temperature is the heat released inside the walls. The heat produced in the fluid region is
quickly convected towards the exit from the channel. The heat released inside the walls can only leave the domain by diffusion into the
fluid region and thus is accumulated along the channel length.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transfer in magnetohydrodynamic (MHD) flows is
important in many applications, such as liquid-metal blan-
kets and divertors for fusion reactors [1–4]. One of the
main aims of the blankets is to extract heat from plasma.
Because of the limitations of the actual material properties
and the efficiency of the electricity production, blankets
must operate within relatively narrow range of temperature
variation of between 100 �C and 200 �C [5]. Usually, pure
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lithium or lead–lithium alloys are used as coolant fluid,
which flows in channels with thin walls made of stainless
steel. Owing to the high electrical conductivity of liquid
metals, the flow interacts with the strong, externally
imposed magnetic field confining the plasma. This results
in high electric currents induced in both the liquid metal
and the electrically conducting walls.

The electric currents affect heat transfer in several ways.
First of all, the flow pattern is altered greatly by the electro-
magnetic body force, and thus the convective heat transfer
characteristics are changed. This effect has been studied by
many authors, e.g. [1,6,7], and has been reviewed in [4,5].
Secondly, high electric currents flowing through conduct-
ing media lead to the increase of the temperature due to
the Joule heating [8]. In this study we focus on the latter
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Fig. 1. Schematic diagram of the Hartmann flow.
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effect and its impact on the heat transfer in a fully devel-
oped channel flow between two parallel thin electrically
conducting plates transverse to the magnetic field.

The non-isothermal MHD flow is characterised by sev-
eral dimensionless parameters. The most important of
them are the Hartmann number, Ha, which expresses the
ratio of the electromagnetic and viscous forces, the Peclet
number, Pe, which expresses the ratio of the convective
and conductive heat fluxes, and the thermal and electrical
wall conductance ratios. The Hartmann and Peclet num-
bers are assumed to be very high. In fusion blanket appli-
cations they are of the order of 103–105 and 103–104,
respectively [9]. Thus the electromagnetic and convective
terms dominate the problem.

Joule heating effect in MHD channel flows has been
analysed in the past [1,7]. In those studies the walls have
been assumed to be electrically perfectly conducting or
insulating, and only moderate or low values of the Hart-
mann number have been considered. In both cases the con-
clusion was that Joule heating effect was insignificant even
for very strong magnetic fields. This conclusion is adequate
when the walls are electrically insulating or the magnetic
field is relatively weak corresponding to low or moderate
Hartmann numbers. However, the Joule heat is propor-
tional to Ha2, so that the effect of the finite conductivity
of the walls on the fluid flow and the magnitude of the elec-
tric currents can be significant for high values of the Hart-
mann number [8,10]. Therefore, in fusion reactor blankets
such assumptions are not justified.

The aim of this study is to evaluate the magnitude of the
Joule heat in a channel with thin thermally and electrically
conducting walls. The outside surface of the walls is either
perfectly thermally conducting or thermally insulating. This
corresponds to the physical conditions present in hybrid
and self-cooled fusion blankets, respectively. Particular
attention will be given to the temperature estimate at the
fluid-wall interface, which is a crucial parameter for the
blanket design. It will be shown that for the range of param-
eters relevant to fusion applications the Joule heating may
be significant and therefore cannot be neglected.
2. Formulation

Consider the steady flow of a viscous, incompressible,
electrically conducting fluid confined between two infinite
parallel plates of thickness h�w separated by a distance of
2a* (Fig. 1). The flow is subject to a uniform transverse
magnetic field B� ¼ B�0ŷ. Here (x*,y*,z*) are Cartesian co-
ordinates. The flow is hydrodynamically fully developed
(Hartmann flow). The fluid flows with mean velocity v�0
subject to a constant pressure gradient, op*/ox* = �K*.
Both walls are electrically and thermally conducting.

The dimensionless equations governing the flow are [1]

Ha�2 d2u
dy2
� jz ¼ �K; ð1Þ
jz ¼ E þ u; ð2Þ

r2T þ j2
z þ Ha�2 du

dy

� �2

¼ Pe � u oT
ox
: ð3Þ

Here the length, the fluid velocity v ¼ uðyÞx̂, the pressure p,
the electric current density j ¼ jzẑ, the electric field E ¼ Eẑ,
and the temperature T are normalized by a*, v�0, a�r�v�0B�20 ,
r�v�0B�0, v�0B�0 and ðT � � T �0Þ=DT �, respectively; $2 =

o2/ox2 + o2/oy2. The characteristic temperature difference

DT � ¼ a�2r�v�20 B�20 =k
� is based on the Joule dissipation.

The square of the Hartmann number, Ha ¼
a�B�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�=q�m�

p
, characterises the ratio of the electromag-

netic to the viscous forces. The Peclet number,
Pe ¼ v�0a�q�C�p=k

�, determines the ratio of convective and

conductive heat fluxes. In the above, q*, m*, k*, r* and C�p
are the fluid density, kinematic viscosity, thermal conduc-
tivity, electrical conductivity, and specific heat of the fluid,
respectively.

The dimensionless equations governing the electric cur-
rent density and the temperature in the walls are as follows:

jzw ¼ rwE; ð4Þ

r2T w þ
j2

zw

rwkw

¼ 0: ð5Þ

Here Tw is the wall temperature, kw ¼ k�w=k
� and

rw ¼ r�w=r
� are relative thermal and electrical conductivi-

ties of the walls.
We take an advantage of the symmetry of the problem

and construct a solution for y > 0 (top half of the channel)
subject to the symmetry conditions

ou
oy
¼ 0;

oT
oy
¼ 0 at y ¼ 0: ð6a; bÞ

The total electric current passing through a cross-section
x = constant must vanish. Integrating the electric current
in the fluid and in the walls defined by Eqs. (2) and (4)
yields
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Fig. 2. Dimensionless temperature for thermally conducting outside wall
surface and for h = 0.05, rw = 1.58, kw = 1.68, Ha = 5820.
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Z 1

0

ðE þ uÞdy þ
Z h

0

rwEdy ¼ 0; ð7Þ

where h ¼ h�w=a� is the dimensionless wall thickness. The
dimensionless mass flux is equal to 2, i.e.Z 1

0

udy ¼ 1: ð8Þ

The boundary condition for the fluid velocity at the wall is
the no-slip condition

u ¼ 0 at y ¼ 1: ð9Þ
The outside walls are either thermally conducting, so that

T w ¼ 0 at y ¼ 1þ h; ð10aÞ

or thermally insulated, so that

oT w

oy
¼ 0 at y ¼ 1þ h: ð10bÞ

Finally, the temperature and the normal heat flux are con-
tinuous at the interface between the wall and the fluid,
which yields

T w ¼ T ; kw

dT w

dy
¼ dT

dy
at y ¼ 1: ð11a; bÞ

The fluid velocity is obtained independently of the temper-
ature from Eqs. (1), (2), (4), (7), (8) and (9) to give the well-
known Hartmann profile [4]:

u ¼ Ha
Ha� tanh Ha

1� coshðHayÞ
coshðHaÞ

� �
; ð12Þ

while the pressure gradient is

K ¼ cHaþ tanhðHaÞ
ð1þ cÞðHa� tanhðHaÞÞ ; ð13Þ

where c ¼ r�wh�w=r
�a� is the wall conductance ratio.

The electric field is determined from Eqs. (7), (8) and is
equal to

E ¼ � 1

1þ c
: ð14Þ

Substituting Eq. (14) into Eq. (4) yields the electric current
in the wall as follows:

jzw ¼ �
rw

1þ c
: ð15Þ

The electric current in the fluid is defined by Eq. (2).

3. Thermally conducting outer wall surface

If the temperature of the outside surface of the walls is
fixed (T = 0 at y = 1 + h), as e.g., in hybrid blankets, a
solution independent of x is possible. In this case the flow
is assumed to be thermally fully developed, and Eqs. (3)
and (5) subject to the conditions (6), (10a) and (11) can
be solved exactly. An analytical solution for the tempera-
ture in the flow and in the thin walls is
T ¼ D1

1

2
1� cosh2ðHayÞ

cosh2ðHaÞ

 !
� 2D2

Ha
1� coshðHayÞ

coshðHaÞ

� �"

þ 1

2
D2

2 1þ 2h
kw

� y2

� �
� D3

tanhðHaÞh
ð1þ cÞkw

�
þ hc

2kwð1þ cÞ2
;

ð16Þ

T w ¼
1

2
D4½ð1þ hÞ2 � y2� � ð1þ h� yÞ

� D4 þ
D1

kw

D3

tanhðHaÞ
1þ c

� D2
2

� �� �
; ð17Þ

where

D1 ¼
1

½Ha� tanhðHaÞ�2
; D2 ¼

cHaþ tanhðHaÞ
1þ c

;

D3 ¼ �Haþ cHaþ 2 tanhðHaÞ; D4 ¼
rw

ð1þ cÞ2kw

:
ð18Þ

If the channel walls are thermally perfectly conducting
(kw ?1), limits c ? 0 or c ?1 in Eq. (16) give the solu-
tions for a channel with electrically insulated or perfectly
conducting walls, respectively, presented in [1].

A typical non-dimensional temperature profile for finite
values of kw and c is shown in Fig. 2. As the electric current
is higher in the thin conducting walls than that in the flow,
the temperature gradient inside the walls is much higher
than that in the flow.

From Eqs. (5) and (15) follows that Joule dissipation in
the walls has a maximum precisely at c = rwh = 1. Fig. 3
shows temperature dependence on the electrical conductiv-
ity and thickness of the wall for c < 1, typical for blankets.
In this range, higher electrical conductivity of the walls
results in higher wall currents so that more Joule heat is
released into the channel (Fig. 3a). With rw changing from
1 to 2, the corresponding temperature at the wall doubles.
Similar effect takes place if the wall thickness is increased
(Fig. 3b). Note that only values of h below 0.1 are of
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Fig. 3. Dimensionless/dimensional temperature variation with (a) electrical conductivity of the wall and (b) thickness of the wall for thermally conducting
outside wall surface at symmetry plane y* = 0 for a* = 0.06 m, v�0 ¼ 1 m=s, B0 = 10 T (Ha = 11,640).
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practical interest in fusion applications (to the left of the
vertical broken line).

In a strong magnetic field the non-dimensional temper-
ature defined by Eq. (16) becomes

T ! c2ð1� y2Þ
2ð1þ cÞ2

þ cð2cþ 1Þ
2Bið1þ cÞ2

as Ha!1: ð19Þ

Here Bi = kw/h is the Biot number, which describes the rel-
ative thermal conductivity of the wall in the normal direc-
tion. As there is no convective heat transfer, Joule heat is
transported by diffusion, and is removed at the outside wall
surface. This results in lower temperatures near the walls
with temperature maximum in the centre of the channel.

The dimensional temperature grows proportionally to
B�20 v�20 and thus can reach high values in high magnetic
fields or for high flow velocities. For a flow of lead–lithium
[4] with stainless steel walls [11] (k* = 13.184 W/mK, q*m* =
2.097 � 10�3 kg/ms, k�w ¼ 22:2 W=mK, r* = 7.891 �
105(X m)�1, r�w ¼ 1:25 � 106ðX mÞ�1Þ in a channel of
width a* = 0.06 m, walls of thickness h�w ¼ 0:003 m, mag-
netic field of 5 T, and average velocity of v�0 ¼ 2 m=s, the
maximum temperature in the mid-plane of the flow is
83 �C. This is a sufficiently high value which may be
reached in dual-coolant blankets with thin conducting
walls. In hybrid blankets, such as European Helium
Cooled Lead Lithium (HCLL) concept fluid velocities are
much lower, of the order of mm/s [12], so that Joule heat-
ing effect becomes insignificant.

In self-cooled blankets, however, channel walls normally
have thermally insulating outer wall surface. This case will
be considered in next section.

4. Thermally insulating outer wall surface

When the outside surface of the walls is thermally insu-
lating, the heat released in the flow cannot leave the chan-
nel through the walls, and thus no thermally fully
developed flow exists. In order to study the Joule heating
effect in such a configuration, we consider developing tem-
perature in a long channel. The temperature is fixed at the
entrance to the channel:
T ¼ 0 at x ¼ 0: ð20Þ
It has been shown [7] that for channels with electrically
insulating walls viscous dissipation and Joule dissipation
are of the same order. When the electrical conductivity of
the channel walls increases, the electric currents within
the walls, and thus the Joule dissipation become stronger.
However, viscous dissipation does not depend on c and
thus remains constant. Therefore, the Joule effect becomes
dominant in channels with walls of finite conductivity. This
allows one to neglect viscous effects in Eq. (3) and to use
slug flow approximation (u = 1) for flows with moderate
to high Hartmann number.

4.1. Numerical solution

Eqs. (3) and (5) subject to the boundary conditions (2),
(6), (10b), (11), (14) and (15) have been solved numerically
using CFX. This is a commercial fluid dynamics package
based on the finite volume technique and the SIMPLE
(semi-implicit method for pressure-linked equations) fam-
ily algorithms for the pressure–velocity coupling.

All calculations have been performed for liquid lead–
lithium flow with the stainless steel walls. Other dimen-
sional parameters are: a* = 0.06 m, the thickness of the
wall h* = 0.003 m, the axial distance x�max ¼ 10:8 m, v�0 ¼
2 m=s, the magnetic field varying between 1 T and 5 T.
The corresponding dimensionless parameters are: c =
0.079, Pe = 16396, Ha = 1164, 2328, 3492, 4656, 5820.
The dimensionless length of the channel is xmax = 180,
which approximately corresponds to the total length of
the blanket.

The mesh used for calculations is uniform in the axial
direction and non-uniform in the transverse direction with
points clustered near the wall. The smallest mesh size in the
transverse direction is 0.01. The results have been found to
be sensitive to the axial mesh resolution. The axial mesh
size of 0.25 was sufficient to achieve excellent agreement
with the analytical solutions for the whole range of param-
eters considered here. An example of the comparison is pre-
sented in Fig. 4. In all cases, calculations stopped when the
residual in the energy equation was smaller than 10�8.
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The development of temperature with the axial distance
at the fluid-wall interface and at the channel axis is shown
in Figs. 4 and 5, respectively. Fig. 4 shows that the temper-
ature at the fluid-wall interface increases with the Hart-
mann number significantly. At the exit from the channel
it reaches a value of 175 �C for Ha = 5820, corresponding
to the magnetic field of 5 T. Fig. 5 shows that the temper-
ature at the channel axis does not rise significantly even for
high values of the Hartmann number.
x

0

( 
T

*  -
 T

* 0 )
 / 

(˚
C

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
B0 = 1 T

B0 = 2 T

B0 = 3 T

B0 = 4 T

B0 = 5 T

2 4

Fig. 5. Variation of dimensional temperature with the axial length for ther
h* = 0.06 m (h = 0.05), v�0 ¼ 2 m=s (Pe = 16,396): numerical solution.
The main reason why the Joule heating is strong at the
fluid-wall interface is the following. As the Peclet number
is high, the whole blanket operates in a thermally develop-
ing regime. The heat released inside the fluid is convected
to the exit from the domain very quickly. However, there
is no convective heat transfer inside the walls. The only
possibility for the heat to leave the domain is to diffuse into
the fluid, where it will be transported by convection
towards the exit. As the diffusion is a slow process, high
* / (m)
106 8

mally insulating outside wall surface at the axis y* = 0 for a* = 0.06 m,
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peaks of temperature appear both inside the walls and in
the fluid near the walls, where the thermal boundary layers
are formed.
4.2. Self-similar solution

When the walls of the channel are sufficiently thin, the
temperature gradient inside the walls is much higher in
the y-direction than that in the x-direction. Therefore, the
term o2Tw/ox2 in Eq. (5) can be neglected yielding equation

o2T w

oy2
¼ � rw

kwð1þ cÞ2
: ð21Þ

Integrating Eq. (21) twice and using boundary conditions
(10b) yields

T w ¼
rw

kwð1þ cÞ2
ð1þ hÞy � y2

2

� �
þ CðxÞ; ð22Þ

where C(x) is an unknown function.
Next, for high values of the Peclet number, the term

o2T/ox2 in Eq. (3) is negligible so that Eq. (3) is reduced to

o2T
oy2
þ c2

ð1þ cÞ2
¼ Pe

oT
ox
: ð23Þ

The matching conditions (11b) and Eq. (22) then provide
the boundary conditions for the temperature in the fluid:

dT
dy
¼ c

ð1þ cÞ2
at y ¼ 1: ð24Þ

For n = x/Pe� 1, the solution to Eq. (23) subject to
boundary condition (24) and symmetry condition (6) may
be sought in the following form:

T ¼ c2

ð1þ cÞ2
nþ tðn; yÞ þ tðn;�yÞ; ð25Þ

Function t(n,y) is expressed in a self-similar form as
follows:

t ¼
ffiffiffi
n

p
F ðgÞ; ð26Þ

where g ¼ ð1� yÞ=
ffiffiffi
n
p

and

F ðgÞ ¼ c

ð1þ cÞ2
2ffiffiffi
p
p expð�g2=4Þ � gerfcðg=2Þ
� �

: ð27Þ

The first term in Eq. (25) represents temperature in the
core. The other two terms represent thermal, developing
boundary layers of thickness O(Pe�1/2) at walls y = 1 and
y = �1, respectively. They are equivalent to boundary lay-
ers at semi-infinite walls with a constant heat flux [13]. For
n� 1, which holds in fusion blanket applications, the effect
of each boundary layer on the one at the opposite wall, as
well as on the core, is exponentially small.

Now, substituting Eqs. (25)–(27) into the boundary con-
dition (11a) and neglecting exponentially small terms as
Pe ?1 gives
CðxÞ ¼ c2

ð1þ cÞ2
x

Pe
þ c

ð1þ cÞ2
2

ffiffiffiffiffiffiffiffiffiffiffi
x

p � Pe

r
� 1

2kwh
ð1þ 2hÞ

� �
;

ð28Þ

so that Eq. (22) yields

T w¼
c2

ð1þ cÞ2
nþ c

ð1þ cÞ2
2
ffiffiffi
n
pffiffiffi
p
p � 1

2kwh
ðy�1Þ½y�ð1þ2hÞ�

� �
:

ð29Þ

Comparison with the numerical solution for lead-lithium
flow with stainless steel walls for B�0 ¼ 5 T (Ha = 5820) is
given in Fig. 4. It is evident that the self-similar solution
gives a perfectly adequate estimate of temperature varia-
tion for flows at high values of the Peclet number and for
thin conducting walls.

At each cross-section x = constant the temperature is
highest at the outer wall surface,

T w ¼
c2

ð1þ cÞ2
nþ 2c

ffiffiffi
n
p

ð1þ cÞ2
ffiffiffi
p
p þ c

ð1þ cÞ2
h

2kw

at y ¼ 1þ h:

ð30Þ

At the fluid-wall interface,

T w ¼
c2

ð1þ cÞ2
nþ 2c

ffiffiffi
n
p

ð1þ cÞ2
ffiffiffi
p
p at y ¼ 1: ð31Þ

The first terms, proportional to n, in Eqs. (29)–(31) domi-
nate in the region n� 4/pc2, where the temperature exhib-
its the linear profile corresponding to the fully developed
regime. For high values of the Peclet number characteristic
to the fusion blankets this condition is not satisfied, and the
fully developed flow regime is never reached.

For small values of n (n� 1) the first term becomes neg-
ligible provided c < 2=

ffiffiffi
p
p

. The third term in Eq. (30) is
important only at the entrance to the channel
ðn < ph2=ð16k2

wÞÞ. Therefore, the temperature inside the
wall develops as

ffiffiffi
n
p

along the whole length of xmax = 180.
In dimensional variables, at the exit from the channel this
dominant term gives the estimate of maximum temperature
as follows:

T �max ¼ A
a�r�v�3=2

0 B�20ffiffiffiffiffiffiffiffiffiffiffiffiffi
k�qCp

p ffiffiffiffiffiffiffiffiffi
x�max

p
ð32Þ

and thus grows as 	 B�20 v�3=2
0 . Here A ¼ 2c=ð1þ cÞ2

ffiffiffi
p
p

.
Temperature profiles at different distances from the

entrance to the channel (Fig. 6) show diffusion of heat gen-
erated inside the walls into the flow region as n increases.

If the walls are perfectly conducting, the temperature in
the flow defined by Eq. (25) becomes linear with respect
to n and independent of y, namely,

T ! n as c!1: ð33Þ

As there is no Joule heating inside the walls, there is no
heat flux into the flow region from the walls. In the flow re-
gion, the Joule heat is proportional to u2 and is almost uni-
form. It is convected in the x-direction with no diffusion in
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the y-direction taking place. The dimensional temperature
in a channel with electrically perfectly conducting walls is

T � ¼ T �0 þ
rv�0B�20

q�C�p
x�:

For lead–lithium flowing with v�0 ¼ 2 m=s in a channel with
half-width a* = 0.06 m in a magnetic field of B�0 ¼ 5 T, the
increase in temperature over 200 values of the characteris-
tic length is 261 �C.

For finite values of the wall conductance ratio c, the tem-
perature can exceed that for electrically perfectly conduct-
ing walls defined by Eq. (33). Fig. 7 shows temperature at
the fluid-wall interface for several values of c. Compared to
channel with c = 0.079, the fully developed temperature
(33) characteristic for perfectly electrically conducting walls
is higher if the channel length is nmax > 0.006. However, for
higher c the temperature at the interface will exceed T = n
in the whole length of channel.
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It follows from Eq. (25) that for small values of c and n
the dimensional heat flux into the channel from the walls
caused by the Joule heat is

q�w ¼ k�
oT �

oy�

				
y�¼a�

¼ k�DT �

a�
c

ð1þ cÞ2
¼ h�wr�wv�20 B�20 :

For lead–lithium flowing with v�0 ¼ 2 m=s in a channel with
stainless steel walls of thickness h* = 0.003 m in a magnetic
field of B�0 ¼ 5 T, the heat flux is qw ¼ 0:375 MW=m2. It is
much higher than that presented for electrically insulating
or perfectly conducting walls [7].
5. Conclusions

Hartmann flow with thin electrically conducting walls
has been studied both analytically and numerically. It has
been shown that for the thermally conducting outside sur-
face of the walls the Joule heating can become significant
for high values of the Hartmann number and moderate
average velocity.

When the outside surface of the walls is thermally insulat-
ing, the effect is even more pronounced. Under the same con-
ditions as above, the temperature can rise by over 200 �C
over a distance of about 180 values of the characteristic
length. This increase is caused by strong electric current
flowing inside the domain. While in the flow region the
released heat is convected out of the domain, there is no con-
vection inside the walls. Therefore, the heat is accumulated
in thin conducting walls and is partly diffused into the fluid.

In previous studies [1,7] the Joule heating effect has been
found insignificant, even for high values of the Hartmann
number and high velocities. These studies differ with the
present investigation in that the Joule heat released in the
walls of finite electrical conductivity and thickness has been
considered here. It has been shown in this study that this is
a major effect, which needs to be taken into account for the
design of self-cooled blankets for fusion reactors.

Present study dealt with a simple theoretical model of
the Joule heating in channel flow. However, the presence
of the sidewalls in the channel with a rectangular cross-sec-
tion will modify the fluid flow, and therefore the heat trans-
fer. Depending on the parameters, the electric current may
complete its loop inside the sidewalls [10]. This can lead to
high-velocity jets near the sidewalls, which will affect the
heat transfer. However, the electric currents flowing inside
the sidewalls will produce additional Joule heat. Therefore,
the channel flow problem considered in this paper is the
first step in understanding the nature and the magnitude
of the Joule heating effect in fusion applications.

Finally, as variation of the temperature in many cases
spans 200 �C, material properties such as electrical conduc-
tivity, kinematic viscosity and density may significantly
vary with temperature depending on the liquid metal and
wall material. As we were concerned with PbLi in this
paper, such a variation is insignificant. For example, the
electrical conductivity of PbLi varies by less than 6% over
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200 �C. For other liquid metals, such as Na, this variation
may reach 50%. In that case variation of parameters with
temperature cannot be neglected and will lead to nonlinear
coupling of fluid flow and heat transfer, which is currently
being investigated.
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